Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities
نویسندگان
چکیده
We compare a full-year (2006) record of surface air NO2 concentrations measured in Israeli cities to coinciding retrievals of tropospheric NO2 columns from satellite sensors (SCIAMACHY aboard ENVISAT and OMI aboard Aura). This provides a large statistical data set for validation of NO2 satellite measurements in urban air, where validation is difficult yet crucial for using these measurements to infer NOx emissions by inverse modeling. Assuming that NO2 is well-mixed throughout the boundary layer (BL), and using observed average seasonal boundary layer heights, near-surface NO2 concentrations are converted into BL NO2 columns. The agreement between OMI and (13:45) BL NO2 columns (slope=0.93, n=542), and the comparable results at 10:00 h for SCIAMACHY, allow a validation of the seasonal, weekly, and diurnal cycles in satellite-derived NO2. OMI and BL NO2 columns show consistent seasonal cycles (winter NO2 1.6–2.7× higher than summer). BL and coinciding OMI columns both show a strong weekly cycle with 45–50% smaller NO2 columns on Saturday relative to the weekday mean, reflecting the reduced weekend activity, and validating the weekly cycle observed from space. The diurnal difference between SCIAMACHY (10:00) and OMI (13:45) NO2 is maximum in summer when SCIAMACHY is up to 40% higher than OMI, and minimum in winter when OMI slightly exceeds SCIAMACHY. A similar seasonal variation in the diurnal difference is found in the source region of Cairo. The surface measurements in Israel cities confirm this seasonal variation in the diurnal cycle. Using simulations from Correspondence to: F. Boersma ([email protected]) a global 3-D chemical transport model (GEOS-Chem), we show that this seasonal cycle can be explained by a much stronger photochemical loss of NO2 in summer than in winter.
منابع مشابه
Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from space (SCIAMACHY and OMI sensors) using in situ measurements in Israeli cities
We compare a full-year (2006) record of surface air NO2 concentrations measured in Israeli cities to coinciding retrievals of tropospheric NO2 columns from satellite sensors (SCIAMACHY aboard ENVISAT and OMI aboard Aura). This provides a large statistical data set for validation of NO2 satellite measurements in urban air, where validation 5 is difficult yet crucial for using these measurements ...
متن کاملApplication of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian Subcontinent
[1] We used SCIAMACHY (10:00 LT) and OMI (13:30 LT) tropospheric NO2 columns to study diurnal and seasonal patterns in NO2 concentrations over India. Using characteristics of seasonal variability in tropospheric NO2 columns, we present a simple methodology to identify the dominant NOx source category for specific regions in India. Regions where the dominant source category is classified as biom...
متن کاملGround-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument
[1] We present an approach to infer ground-level nitrogen dioxide (NO2) concentrations by applying local scaling factors from a global three-dimensional model (GEOS-Chem) to tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Seasonal mean OMI surface NO2 derived from the standard tropospheric NO2 data product (Version 1.0.5, Collection 3) v...
متن کاملEstimation of Surface NO2 Volume Mixing Ratio in Four Metropolitan Cities in Korea Using Multiple Regression Models with OMI and AIRS Data
Surface NO2 volume mixing ratio (VMR) at a specific time (13:45 Local time) (NO2 VMRST) and monthly mean surface NO2 VMR (NO2 VMRM) are estimated for the first time using three regression models with Ozone Monitoring Instrument (OMI) data in four metropolitan cities in South Korea: Seoul, Gyeonggi, Daejeon, and Gwangju. Relationships between the surface NO2 VMR obtained from in situ measurement...
متن کاملInvestigation of changes in surface urban heat-island (SUHI) in day and night using multi-temporal MODIS sensor data products (Case Study: Tehran metropolitan)
The term urban heat island (UHI), described the phenomenon of climate change in urban areas compared with surrounding rural areas. UHI effects include: increasing in energy and water consumption, air pollution expansion and interfering in thermal comfort. Surface urban heat island (SUHI) contains patterns of land surface temperature (LST) in urban areas that has interaction with UHI in urban ca...
متن کامل